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Abstract 
In this paper, we study the use of orthogonal transformations, namely, the basic Haar wavelet 

transforms, for data processing of the Earth remote sensing. 

The internal structure of orthogonal Haar transforms is considered. The Haar matrix is 

divided into blocks of the same type, so that parallelization of the computations is possible. The 

expediency of replacing the spectral components corresponding to the whole block (or several blocks) 

of the original matrix with zeros is asserted. Theoretical and experimental studies are carried out to 

improve the results of image classification (on the example of cluster analysis). The Haar wavelet 

expansion coefficients are used as indicators when decoding space images for the presence of waste 

disposal sites. 

The aim of this paper is to describe the approach, on the basis of which an optimal method is 

established on a class of vectors with real components 
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  kkN xxxxx 1k10 max:,..., , application of two-dimensional discrete Haar wavelet 

transformations in the problem of recognition of space images for the presence of waste disposal sites.    

General methodology of research. The paper uses elements of mathematical analysis, wavelet 

analysis, the theory of discrete orthogonal transformations, and methods for decoding cosmic images. 

Scientific novelty. Encoding by means of conversion is an indirect method, especially effective 

in processing of two-dimensional signals, in particular, space images used for remote sensing  

of the Earth. 

We propose the approach that takes into account the structure of the wavelet-Haar matrix, 

while recognizing waste disposal fields by means of space images. 

The article comprises the result of the experimental application of wavelet-Haar 

transformations for decoding of space images. We consider this case, both with and without the 

technique of taking into account the structure of the wavelet-Haar matrices. 
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Introduction 
 

Modern photogrammetry is characterized by digitalization, i.e. wide 
introduction of information technologies and the creation of automatic and 
automated information systems for decoding of satellite imagery. It suggests the 
measuring of the coordinates of the corresponding points and the recognition of 
objects. 

This article continues the research of the creation of an automated system 
for monitoring the territories for the presence of waste disposal sites (WDSs). 

As a matter of fact, we speak about the application of the mathematical 
apparatus, namely, of wavelet analysis in the subsystem of detecting the 
unauthorized WDSs, while working with aerospace information, primarily for 
automated decryption. As different information technologies with multiple 
characteristics emerge, remote monitoring of various phenomena and objects is now 
quite possible and is widely used [1, 12, 22–28]. 

It is, first of all, the satellite systems for Earth observation and large flows 
of information that enter the scientific laboratories. This leads to the creation of new 
approaches and methods for organization of the work with information about remote 
sensing of the Earth (RS), as well as technologies for constructing remote monitoring 
systems. 

The topic of wavelet analysis is quite in demand [4–11, 18, 19]. The wavelet 
transform is the decomposition of the original signal into wavelet functions using 
scaling and shift operations. The graphical representation of the result of the wavelet 
analysis is called wavelet coefficients. The accomplishment of an inverse 
transformation leads to a convolution of the wavelet coefficients and the wavelet 
function. If only a part of the coefficients is used for the inverse transformation, a 
filtered image is obtained, which is later used when recognizing the objects in the 
image. 

There is a relationship between the values of the coefficients of wavelet 
decompositions and signal deviations [18, 19]. This property is used when working 
with space images [12]. 

The visual analysis of wavelet decompositions allows identifying objects of 
different sizes. This is due to the fact that when the conversion and the shifts are 
performed in parallel, scaling also occurs. General patterns are determined when 
small scales are used. Local features in the image are revealed when large scales are 
used [20]. 

The use of the wavelet transform makes it possible to exclude from 
consideration small, minor objects that hinder the visualization of valuable objects 
in the image. The visualization of WDS, as is known, is carried out with the 
automated processing of the results of remote sensing of the Earth, as well as in the 
interactive processing of space images. 
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When monitoring territories using remote sensing data for the presence of a 
WDS, one can use the properties of wavelet transforms under consideration. 

To detect the changes in the area of study, a periodic monitoring of a fixed 
area is also necessary. So, in the course of time, it is necessary to identify changes in 
the terrain for the presence of WDS. When solving such a problem, external factors 
that interfere with the objective information gathering are in effect: the state of the 
atmosphere, the season, the position of the sensor, and so on. 

The wavelet transform minimizes this effect and improves the accuracy of 
the decoding of the space image [16]. 

Let us specifically consider the Haar transformations as one of the varieties 
of wavelet transforms and carry out theoretical as well as practical studies on 
deciphering the space images (SI) for the presence of a WDS [20]. 
 

Formulation of the problem 
 

The Haar functions belong to the class of piecewise-constant functions. They 
allow evaluating the local properties of the signals under study and are usually called 
Haar wavelets. Let us give the main definitions. 
Definition 1. 
 

(1)        

𝜒1(𝑡) ≡ 1
 

𝜒𝑚𝑗(𝑡) =
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where 12,,1;,2,1  mjm  , and in case 12  mj , the right side of the 
segments is also considered closed on the right. When numbering functions by a 
single index k, it is assumed jk m  12 .  

This definition, as it is known, differs from Haar's definition of Haar values 
[2] at points of discontinuity, but the main property of the Haar system – the uniform 
aspiration of the Fourier-Haar series of f (t) to f (t) [10] is preserved. 

Let’s consider the Haar functions from the standpoint of applying them to 
wavelet analysis. It is known that Haar's functions are now also called Haar wavelets, 
since they can be described with the help of formal rules adopted in the theory of 
wavelet analysis [18, 19]. The scaling function and the "Haar mother wavelet" 
coincide with the first and second functions respectively, of the considered system. 
 

(2)              ;1,0,10    
 



106 
 

(3)               
 
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Functions of the Haar system are determined according to the theory of wavelets by 
means of large-scale transformations and transfers of the "mother wavelet": 

(4)            12...,,1,0...;,2,1,0;22   mmm

mk kmk  
 

It is also known how to move from double numbering to single [19]  
(5)        12,,1,0;,,2,1,0;2  mm kmkn   
 

There is also a mechanism for using the system of orthogonal Haar functions as the 
basis for the expansion of a continuous signal defined on an interval. 

Haar series of one-dimensional signal  Tttx ,0,)(    have the form 
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Here the coefficients are calculated by the formula:
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The truncated Haar series are: 
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The latter possess the property of uniform, mean-square convergence and 
convergence in mean. These series are used to approximate signals described by 
integrable functions. 

The mean square error of approximation for a finite number of orthogonal 
components of the Haar series is calculated by the formula: 
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Or with double numbering, the Haar series has the form: 
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
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We consider the following problem connected with the structure of Haar functions 
[3]. 

As an example, let us consider the Haar matrix of order 8. 
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(11)  
  
 
 
 
 

The notation system is as follows: kMH8  – a rectangular submatrix of the 
size 128  k . This submatrix is formed from the Haar functions of rank r, where 

3,2,1,22 1  kr kk . 
The Haar matrix of any order )0(2 1   nN n  can be decomposed into 

submatrices . 

Each submatrix is formed from the Haar functions of rank r, kk r 22 1  . 
Known matrix operator  , which makes it possible to create these submatrices with 
the help of a recurrence relation: 

(12)        
   
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
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Notation system: M is a dimension matrix pm ;   – kronecker product.  

After the action of the operator   , we obtain a matrix of dimensions pm 22  ;   
It is known that: 
 

(13)         1,,21
22 1  

 nkMHMH kk
nn   

 

The rectangular matrix k
nMH 12   for any n has the following form: 
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 (14)     
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Notation system: + means + 12 k ;   –  means   – 12 k ; where 1,,2  nk  . 
Let  

1,0, 


Nijj iF   discrete orthogonal transformation (DOT) Haar  matrix 

and let Xx , where  













  kkN xxxxx 1k10 max:,..., . To determine the 

most informative elements, let’s consider the following optimization problem. Find  
extry j   under condition Xx , where:  

 

(15)             110 110   Nxxxy jNjjj    
 

For definiteness, let us consider the maximum problem. 
maxjy  under conditions: 

(16)       1,1,1  Nkxx kk
where   






1

0

N

i

jij ixy   

 j – fixed integer 1,,1  Nj  .  
 

Algorithm for solving the problem (1): In solving this problem, we use the optimality 
principle in dynamic programming [21]. The initial problem splits into iterative 
steps, at each step a solution is sought in accordance with the principle of optimality. 
The decision-making procedure will be carried out starting at the end and going to 
the beginning. 

Let 20 ˆ,,ˆ
Nxx   in (1) are optimally chosen. Then the last step will be to 

find the optimal value of the component 1Nx . Given that   12 NN xx  we 

can assume  1ˆˆ 21   Nsignxx jNN  . 
 

The solution of problem (16) is presented: 
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(17)       
   

      



 11ˆ2ˆ
1ˆ0ˆˆ

22

10

NNsignxNx

xxy

jjNjN

jjj



 
 

           112ˆ1ˆ0ˆ 210   NNNxxx jjjNjj    
Let us now turn to the following problem for a maximum: maxjy  on 

condition: 
 

(18)       2,1,1  Nkxx kk  

where 

(19)         1122

3

0
 





 NNNxixy jjjN

N

i

jij    

 

Let us assume that 30 ˆ,,ˆ
Nxx  in (19) are optimal. Then 

 

(20)           12ˆˆ 32   NNsignxx jjNN   
 

The solution of problem (19) is 
 

(21)               3ˆ1ˆ0ˆˆ 310 Nxxxy jNjjj    

              11212ˆ 3 NNNNNsignx jjjjjN   

=              123ˆ1ˆ0ˆ 310 NNNxxx jjjNjj    

     112  NNN jjj   
 

Continuing this process step by step, in the end we will have 

(22)     1,1,max
1
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1

1

1
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 
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j
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jj
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For the Haar matrix, by virtue of orthogonality, we have: 

(23)             1,1,0110  NjNjjj        

Taking into account relations (22) and (23), we obtain: 

(24)         1,1,max
1

1

1

0
  







 
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N

m

m

i

jj
Xx

  

If we consider the problem to a minimum, we have: 
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(25)         1,1,min
1
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


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In general 

(26)   1,1,max
1
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


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This relation leads to the following assertion. 
 

Statement: 

The least informative elements, which can be zeroed out in the future, are 
the elements of the last bundle of vector y . 
Proof.    Let  NFF H be the matrix of order 

(27)             .,,,,02 10
1 T

NH

n yyxNFyXxnN 

    

Based on (26) and starting from the form of the matrix k
nMH 12  , we have for 

(28)       12,,2 1   kkj  : 

     
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
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


k

kn
k

knkn
k N

NN
  

It follows that the least informative elements are the elements of the last packets of 

vector y , so they can be reset to zero when the image or space image (SI) is further 
processed. 
 

Experimental research 
 

Let’s use the theoretical studies and carry out an experiment related to the 
application of the cluster analysis algorithm to decipher the SI for the presence of 
WDS on the basis of the soil. 

The state of the soil cover largely depends on anthropogenic factors – 
industrialization, urbanization, contamination with solid and liquid waste, soil 
poisoning with pesticides, etc. 

As an experimental part of this article, we investigate the problem of using 
wavelets-Haar for space images obtained from the Landsat artificial satellite (AS), 
in aerospace monitoring of solid domestic waste. The experiment will consider 
multispectral imagery, for example, one received from Landsat 4-5 TM satellites for 
a given observation period (OP), usually at least 10 years long, as well as the data on 
the amount of precipitation in the study area for the same period. Photographs (SI) 
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should be geo-linked, atmospherically corrected and without clouds. In the 
experiment, bands 1–7 are used. 

Consider one of the methods for processing of multispectral images that 
improves the results of decoding – the method of applying orthogonal 
transformations (Fourier transform, Walsh, Haar, and Karunen-Loeve). In particular, 
we consider the wavelet-Haar transformation. We also verify assertion 1, which was 
proved earlier in this article. 

It is known [12] that the bands of multispectral images very often turn out to 
be correlated. The reason for this correlation may be: 
- Correlation of spectral properties of objects (this is possible, for example, with 

low reflectivity of vegetation cover in the visible part of the spectrum); 
- Topography (the level of shading due to topographic features can be considered 

the same in all ranges of registration of reflected solar radiation); 
- Overlapping of registration ranges (ideally this factor is excluded when 

designing the sensor, but in practice this is not always the case). 
Such a correlation leads to the emergence of redundant information. The 

goal that is in front of us in the experiment is to try to get rid of the redundant 
information with minimal errors using the wavelet-Haar transform property of the 
transformations stated in Statement 1. First, we consider the representation of a space 
image by means of orthogonal transformations. Next, let us consider the selection of 
the most informative coefficients or the selection of certain features by applying 
wavelet-Haar transformations and performing the filtering in the local area of the 
image, i.e. we will make the transition to a new basis for measurements in fixed 
spectral channels. 

The transformation matrix of the orthogonal transform under investigation 
is fixed for a given type of sensor and survey system, therefore, for each new 
surveying system; new coefficients of the discrete orthogonal transformations 
(DOT) must be calculated. 

Let us consider the point of the proposed method. The physical justification 
for it is as follows. In multispectral imaging systems, the image is formed in 
accordance with the reflection from objects of electromagnetic energy in narrow 
spectral regions. 

The image in certain channels fixes the reflection of the spectral brightness 
of the original object in a given range of the electromagnetic spectrum. 
Multispectral image 
 

(29)       


















NMN

M

M

PP

PP

P







1

111  

consists of k images )(kP , each of which represents the values of the brightness 
measured in narrow spectral regions (k – number of channels of the survey system). 
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Vector  k

jijijiji pppP ,,, 21   contains the brightness values of the elements

jiP  in each channel of the filming system. 
For different objects, the spectral brightness in different ranges of the 

electromagnetic spectrum, although different, is strongly correlated. Measurements 
in narrow spectral regions (bands) performed by a multispectral imaging system do 
not eliminate the correlation dependence. Thus, the measurement system does not 
form an orthogonal basis. Orthogonal transformations make a transition from the 
space of measurements of the spectral brightness of objects to the space of attributes 
associated with the properties of a given class of objects. 

So, the experiment consists of two steps: the first one is the application of 
the orthogonal transformation to the original image, which will allow decorrelating 
the component image vectors and reducing the dimensionality of the image; the 
second is to build a learning classifier for the task of pattern recognition. 

Let us consider the implementation of the first part, namely, the selection of 
characteristics. 

We consider the type of object that undergoes changes in the presence of 
solid household waste: clean soil, i.e. we are interested in such a characteristic sign 
as brightness. 

The purpose of experimental studies is to assess the accuracy of soil 
deciphering based on comparing the results of visual decoding of the original image 
and the image obtained with the use of the ADT. Then, based on comparing the 
results of classification without learning, using the k-means algorithm for this image, 
and on the image with orthogonal transformation. After segmenting the selected SIs, 
we define homogeneous clusters. 

 
Description of the algorithm 

 

The further numerical algorithm is defined as follows. 
Let us describe the algorithm first for the original one-dimensional vector x. The 
transition to a two-dimensional image is accomplished by applying the experimental 
results to the rows and columns of the original image, i.e. the SIs, will be discussed 
in detail below. 

Let  110 ,,,  Nxxxx   be the initial data vector, considered as the 
realization of some random process with certain properties. 
 F – discrete orthogonal transformation (wavelet-Haar transform); 
 F-1  – inverse transformation; 

k – number of discarded items, 
m

N
k  ; 

m – the number of stored items in the new coordinate system; 
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 S – matrix of dimension choice Nm  ранга m ,  Nm1 ;  
 W – dimension recovery matrix mN ; 
   – some metric. 
The task of selecting informative elements consists in choosing F, S, W so that 
 

(30)   min, 1  xFSWFx   

The matrices 000 ,, WSF  lead to the indicated minimum and are called 
respectively the optimal basis matrices, optimal choice matrices and optimal 
recovery matrices. 

Substantively, problem (30) reduces to the following. The original vector x 
of dimension N undergoes an orthogonal transformation F, which leads to a new, 
more convenient coordinate system. Then, using the selection matrix S, m samples 
of the signal in the new coordinate system are selected. These samples are intended 
for image recognition. If necessary, "extrapolation" (restoring the dimension) of 
these samples by means of the matrix W is carried out. Then, by means of the 
orthogonal transformation, the original signal is restored. 
When solving the SIs decoding problem, we consider a simpler problem. Namely, 
we fix the transformation F and take TSW  . Then in (30) the minimization is 
performed only over S. 

The value  xFSWFx 000
1

0, 
 is called the recovery error level. 

Comment. Let S be a matrix of the form   ,,0: T

k SWI   - the root-
mean-square criterion, then in expression (30) the optimization is carried out only 
with respect to F. In this case, the optimal basis is the Karunen-Loeve basis [3]. The 
Karunen-Loeve basis leads to uncorrelated components, but requires a large volume 
of operations -  3No . 

In view of our assertion 1, we can list the main steps of the algorithm under 
consideration. 

Let  110 ,,,  Nxxxx   be the initial data vector from some metric 
space  ,X , F is an orthogonal matrix of order N (wavelet-Haar); 

The algorithm is implemented in three steps. 
1. The vector  110 ,,,  Nxxxx   undergoes a transformation F: 

(31)       























1

1

0

Ny

y

y

xFy


 

2. The vector y is replaced by the operator of choice S by a smaller vector ŷ : 
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(32)        110 ,,,ˆ
 myyyySy    , 

which must be further deciphered. 
The matrix S of dimension Nm  has the form: 
 

(33)       























0001000

0000010
0000001


S

 

k – compression ratio of the original signal, 
m

N
k  ; 

3. On the receiving side, the resulting vector ŷ is complemented to the dimension N 
by means of the operation 

(34)        .0,,0,,,,ˆ~
110   m

T yyyySy  

4. The vector y~ undergoes a reverse transformation -1F  i.e. 

(35)       yFx ~ˆ 1  , 
which restores the original data vector with an error  xx ˆ,  . 

The problem is to determine such a choice of the spectral components 
replaced by zero, which ensures a minimum of error for a given k. 
It follows from Assertion 1 that in the case of a wavelet-Haar transformation, it is 
necessary to replace the last pack of blocks with zeros. 

In more detail, let us consider in detail the case of two-dimensional space 
images. 

Entering the input system of the original image of dimension NN  , we 
represent them in the form of their scans, namely the 2Nm  element vector, i.e. 
consider a one-dimensional signal. 

The coding process is performed in two stages. 
1. By means of the transformation F m, the m-dimensional space of the original 
vectors f is mapped into the m-dimensional spectral space of vectors f̂ . 
2. The transition to the k-dimensional (k < m) space by means of the operator S 
reduces the dimension of the vector f̂ , i.e. the most informative spectral components 

of the vector f̂ are selected. 
The most informative are those spectral components whose transmission 

will allow us to obtain in the decoder an estimate of g of the original vector f with 
the minimum possible distortions determined by the chosen metric  gf , . 
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The decoding process is performed in two stages: 
1. By means of the operator W, a filtering of the noisy truncated vector f̂  

and a transition from the k-dimensional to the m-dimensional space of the spectral 
components are carried out. 

2. Through the 1F operator m-dimensional space of spectral components is 
mapped into m-dimensional space of initial vectors. 

Let us give a photogrammetric interpretation of the described algorithm, 
taking into account the research related to the WDS and space images, respectively. 
The Haar transformation in matrix form can be written as YFXFXY 1,   , 
where X and Y are matrices of the halftone image size in the luminance and frequency 
space, F and F-1 are linear operators NN  of the size of the direct and inverse Haar 
transform for the corresponding images of X and Y. 

The matrix X is obtained by changing the size of the original matrix X from
NN   to mm , where ,2,1,2  nN n change in spatial resolution.  

To do this, an interpolation of the functional  jiXz ,  defined by a grid of values 
i = 1 ... m, j = 1 ... m with a step h = 1 (m values along the abscissa and ordinate 
axes) into the functional  z = X (i, j), given by a grid of values i = 1 ... m, j = 1 ... m 
with step h = (m-1) / N (N values along the abscissa and ordinate axes). Compression 
of the matrix Y is provided by the compression matrix SFXY '  (selection matrix) 
S. 

The effect of the operator S on Y acting as a low-pass filter (from 1 to m) 
leads to another result of the direct conversion: SFXY ' . 

As a result of the inverse transformation of the (F')-1 matrix Y ' signal
')'(' 1 YFX   is restored with accuracy  

(36)       
 


N

i

N

j

ijijl xx
N

XX
1 1

2
21 )'(1)',(

2
  , 

l2 – standard-mean-square norm; ε1 – error of restoring a two-dimensional signal. 
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(а1) (b1) 

 
 

 
(а2) (b2) 

 

Fig. 1. Recovery errors: 1) ε1; 2) ε2; on different channels  

and at different compression ratios; b) matrices 

 
We estimate the recovery errors (without the action of Statement) 21 ','   

(under the action of the Statement) for the Haar transformation with different 
compression coefficients k and on different channels of the original image X of the 
litter area (landfill Kuchino, August 2011). We set n = 10. In Fig. 1 shows the 
matrices E1 = [ε1(i,j)], E2 = [ε2(i,j)] of sizes l  (N–1). We see that the maximum 
accuracy is observed on the 6 (thermal) bands and it varies little with compression. 
Matrices 11 'EE   and the elements of the matrix E'2 are on the average larger than 
E1 for a given value of k. The smaller k, the smaller the recovery error. 
In Fig. 2 – an example of signal reconstruction for n '= n / 2 = 5 is given. It can be 
seen from figure (e) that an increase in the spatial resolution and a decrease in the 
compression ratio have little effect on the recovery result. In other words, the image 
of littering can be restored both with preservation or even reduction of the spatial 
resolution, and at its strong compression. This is due to the fact that the litter texture 
is characterized by a random, random spatial distribution of pixel brightness. 
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(а) 

 
(b) 

 
 (c)  
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(d) 

 
(e) 
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(f1) (f2) 

 

Fig.2. An example of Haar transforming the litter image: 

a) source images (with increasing spatial resolution, n = 10); 

b) Haar transformation with contraction (n' = 5); 

c) Haar transformation with contraction and S (n' = 5); 

d) composites of transformations (combination of different channels,  

n = 8, n' = 2); 

e) the best transformation (combination [3 5 7]); 

f) examples of images (1 – n = 8, n'= 2, 2 – n = 10, n' = 3). 
 

 

Conclusions 
 

In this paper, the Haar wavelet transforms used in the recognition of space 
images are studied. The assertion about the determination of the selection matrix for 
a given type of transformation is proved. 

An experiment has been carried out that confirms the validity of the asserted 
statement when decoding space images. This task is included as a component module 
of the project for aerospace monitoring of WDS facilities. The principle of optimality 
in dynamic programming, elements of mathematical analysis, the theory of discrete 
orthogonal transformations, as well as photogrammetric bases of information 
representation in space images are used in the work. 
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ИЗСЛЕДВАНЕ НА ОСНОВНИТЕ ХААР УЕЙВЛЕТ-

ТРАНСФОРМАЦИИ В ЗАДАЧАТА ЗА ДЕКОДИРАНЕ  

НА ПРОСТРАНСТВЕНИ ИЗОБРАЖЕНИЯ ПРИ ОТКРИВАНЕ  

НА СМЕТИЩА 

 
М. Казарян, М. Шахраманян, С. Забунов 

 
Резюме 

В настоящата статия ние изследваме използването на ортогонални 
трансформации, а именно основните Хаар уейвлет трансформации с цел обра-
ботката на данни от дистанционни изследвания на Земята. 

Използва се вътрешната структура на ортогоналните Хаар трансфор-
мации. Хаар матрицата се разделя на блокове от един и същи тип, така че да е 
възможна паралелизация на изчисленията. Установява се целесъобразността на 
заменяне на спектралните компоненти, съответстващи на целия блок (или няколко 
блока) на ортогоналната матрица с нули. Проведени са теоретични и 
експериментални изследвания с цел подобряване на резултатите при класи-
фикация на изображения (чрез примери от клъстерния анализ). Коефициентите на 
разширение на Хаар уейвлета се използват като индикатори при деко-дирането на 
пространствени изображения в търсенето на сметища. 
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Цел на тази публикация е да опише подхода, на базата на който се 
установява оптимален метод  върху клас от вектори с реални компоненти 

 













  kkN xxxxx 1k10 max:,..., , приложение на двумерни дискретни Хаар 

уейвлет трансформации върху задачата за разпознаване на сметища в 
пространствени изображения.    

Обща методология на изследването. Материалът използва елементи на 
математическия анализ, уейвлет анализа, теорията на дискретните орто-гонални 
трансформации и методите за декодиране на космически изобра-жения. 

Научна новост. Кодирането чрез преобразуване е индиректен метод 
особено ефективен при обработката на двумерни сигнали, най-вече про-
странствени изображения, използвани за дистанционни изследвания на Земята. 

Ние предлагаме подход, който взема под внимание структурата на Хаар 
уейвлет матрицата, като в същото време разпознава сметища в пространствени 
изображения. 

Статията обхваща експерименталното приложение на Хаар уейвлет 
трансформациите за декодиране на пространствени изображения. Ние 
разглеждаме случаите, както с, така и без техниката на вземане предвид 
структурата на Хаар уейвлет матриците. 


