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Abstract

In this paper, we study the use of orthogonal transformations, namely, the basic Haar wavelet
transforms, for data processing of the Earth remote sensing.

The internal structure of orthogonal Haar transforms is considered. The Haar matrix is
divided into blocks of the same type, so that parallelization of the computations is possible. The
expediency of replacing the spectral components corresponding to the whole block (or several blocks)
of the original matrix with zeros is asserted. Theoretical and experimental studies are carried out to
improve the results of image classification (on the example of cluster analysis). The Haar wavelet
expansion coefficients are used as indicators when decoding space images for the presence of waste
disposal sites.

The aim of this paper is to describe the approach, on the basis of which an optimal method is
established on a class of vectors with real components

X, = {X=(Xo,--~, Xyt ): fo‘xkil X, ‘ < A}, application of two-dimensional discrete Haar wavelet

transformations in the problem of recognition of space images for the presence of waste disposal sites.

General methodology of research. The paper uses elements of mathematical analysis, wavelet
analysis, the theory of discrete orthogonal transformations, and methods for decoding cosmic images.

Scientific novelty. Encoding by means of conversion is an indirect method, especially effective
in processing of two-dimensional signals, in particular, space images used for remote sensing
of the Earth.

We propose the approach that takes into account the structure of the wavelet-Haar matrix,
while recognizing waste disposal fields by means of space images.

The article comprises the result of the experimental application of wavelet-Haar
transformations for decoding of space images. We consider this case, both with and without the
technique of taking into account the structure of the wavelet-Haar matrices.
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Introduction

Modern photogrammetry is characterized by digitalization, i.e. wide
introduction of information technologies and the creation of automatic and
automated information systems for decoding of satellite imagery. It suggests the
measuring of the coordinates of the corresponding points and the recognition of
objects.

This article continues the research of the creation of an automated system
for monitoring the territories for the presence of waste disposal sites (WDSs).

As a matter of fact, we speak about the application of the mathematical
apparatus, namely, of wavelet analysis in the subsystem of detecting the
unauthorized WDSs, while working with aerospace information, primarily for
automated decryption. As different information technologies with multiple
characteristics emerge, remote monitoring of various phenomena and objects is now
quite possible and is widely used [1, 12, 22-28].

It is, first of all, the satellite systems for Earth observation and large flows
of information that enter the scientific laboratories. This leads to the creation of new
approaches and methods for organization of the work with information about remote
sensing of the Earth (RS), as well as technologies for constructing remote monitoring
systems.

The topic of wavelet analysis is quite in demand [4—-11, 18, 19]. The wavelet
transform is the decomposition of the original signal into wavelet functions using
scaling and shift operations. The graphical representation of the result of the wavelet
analysis is called wavelet coefficients. The accomplishment of an inverse
transformation leads to a convolution of the wavelet coefficients and the wavelet
function. If only a part of the coefficients is used for the inverse transformation, a
filtered image is obtained, which is later used when recognizing the objects in the
image.

There is a relationship between the values of the coefficients of wavelet
decompositions and signal deviations [18, 19]. This property is used when working
with space images [12].

The visual analysis of wavelet decompositions allows identifying objects of
different sizes. This is due to the fact that when the conversion and the shifts are
performed in parallel, scaling also occurs. General patterns are determined when
small scales are used. Local features in the image are revealed when large scales are
used [20].

The use of the wavelet transform makes it possible to exclude from
consideration small, minor objects that hinder the visualization of valuable objects
in the image. The visualization of WDS, as is known, is carried out with the
automated processing of the results of remote sensing of the Earth, as well as in the
interactive processing of space images.
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When monitoring territories using remote sensing data for the presence of a
WDS, one can use the properties of wavelet transforms under consideration.

To detect the changes in the area of study, a periodic monitoring of a fixed
area is also necessary. So, in the course of time, it is necessary to identify changes in
the terrain for the presence of WDS. When solving such a problem, external factors
that interfere with the objective information gathering are in effect: the state of the
atmosphere, the season, the position of the sensor, and so on.

The wavelet transform minimizes this effect and improves the accuracy of
the decoding of the space image [16].

Let us specifically consider the Haar transformations as one of the varieties
of wavelet transforms and carry out theoretical as well as practical studies on
deciphering the space images (SI) for the presence of a WDS [20].

Formulation of the problem

The Haar functions belong to the class of piecewise-constant functions. They
allow evaluating the local properties of the signals under study and are usually called
Haar wavelets. Let us give the main definitions.

Definition 1.

xn@ =1

(1) (ZmT_l,fOT'tE[j_l E)

2m-1’ m

. = m-1 . ;
Xmj ) —2 2 ,forte [ﬂ J )

om ’om-1

0 in all other cases

where m=1,2,...; j=1...,2™", and in case j=2"", the right side of the
segments is also considered closed on the right. When numbering functions by a
single index k, it is assumed k =2 ™" + j.

This definition, as it is known, differs from Haar's definition of Haar values
[2] at points of discontinuity, but the main property of the Haar system — the uniform
aspiration of the Fourier-Haar series of f (t) to f (t) [10] is preserved.

Let’s consider the Haar functions from the standpoint of applying them to
wavelet analysis. It is known that Haar's functions are now also called Haar wavelets,
since they can be described with the help of formal rules adopted in the theory of
wavelet analysis [18, 19]. The scaling function and the "Haar mother wavelet"
coincide with the first and second functions respectively, of the considered system.

2 o0)=1,0)=1, 60.1);
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Functions of the Haar system are determined according to the theory of wavelets by
means of large-scale transformations and transfers of the "mother wavelet":

@ g (@)=V2" y(2" 0-Kk);m=0,1,2,..; k=0,1,....2" —1

It is also known how to move from double numbering to single [19]
() n=2"+k; m=0,1, 2, ....,; k=0,1,...,2" -1

There is also a mechanism for using the system of orthogonal Haar functions as the
basis for the expansion of a continuous signal defined on an interval.
Haar series of one-dimensional signal x(t), te [0, T) have the form

©  x0=Y oz [le

n=l1

Here the coefficients are calculated by the formula:
1} 1
(7 c,o=— | x(t — |dt
=7 j ® 7 | 7
The truncated Haar series are:
. = t
® %0 =en1]
=0 T

The latter possess the property of uniform, mean-square convergence and
convergence in mean. These series are used to approximate signals described by
integrable functions.

The mean square error of approximation for a finite number of orthogonal
components of the Haar series is calculated by the formula:

, 17 Sy t)
® & =TM x(t)—nzz(; c, Z(Tj }dt

Or with double numbering, the Haar series has the form:

(10)  x(t) = c, + i 221 Cow X (%)

m=0 k=0
We consider the following problem connected with the structure of Haar functions

[3].

As an example, let us consider the Haar matrix of order 8.
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11 1 11 1 1 1 } MH/
111 1 -1 -1 -1 -1| } MH;
V2 V2 V2 V2 0 0 0 0 } MH:2
a1 F @) _1jo 0 0 0 V2 V2 -2 -2 '
WT Rl 2 -2 0 00 0 0 0 0
0 0 2 -2 00 0 0
MH;
00 0 0 2 =20 0
00 0 0 0 0 2 -2

The notation system is as follows: M H; — a rectangular submatrix of the
size 8 x 2. This submatrix is formed from the Haar functions of rank r, where
2T < r<2%, k=1, 2,3.

The Haar matrix of any order N =2""' (\n>0) can be decomposed into
submatrices l\/IH;n+1 , k=12, ...,n+1.

Each submatrix is formed from the Haar functions of rank r, 2 < r < 2.

Known matrix operator 3, which makes it possible to create these submatrices with
the help of a recurrence relation:
M] + o]

o : ]

Notation system: M is a dimension matrix mx p; ® — kronecker product.

12 3[M]=m ®F ‘ﬂ:

~

After the action of the operator J, we obtain a matrix of dimensions 2 mx=2 p;
It is known that:

(13)  MHY, = 3[MHE' [ k=2, ..., n+1

2n+l

The rectangular matrix MH ;M for any n has the following form:
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2n+17k 2n+17k

/_/H f_/H

+ed —m 0.0 0..0 0...0 0...0
2n+]7k 2n+17k

4y 2¢'700..0 0.0 +..+ —..— 0..0 0...0

0..0 0..0 0...0 0...0 0...0

2n+1—k 2n+lfk
— —

0.0 0..0 0...0 0...0 +...+4 —...—

Notation system: + means + 4/ 2Kt ; — means —-f 2Kt ;where k=2,....n+1.

discrete orthogonal transformation (DOT) Haar matrix

j.i=0,N—1
and let Xe X, , where X,= %X:(XO"'WXN—I):mE'XXk—I —x| < A}- To determine the

most informative elements, let’s consider the following optimization problem. Find

y; — extr under condition Xe& X, , where:

(15) Yi =X, @, (0)+X1§”j (l)+"'+XN71¢j (N_l)

For definiteness, let us consider the maximum problem.
y; — max under conditions:

[ N-I
(16)  [x —X|<A, k=1, N-1 where yi=> % o)
i=0
j - fixed integer j=1,.., N_1.

Algorithm for solving the problem (1): In solving this problem, we use the optimality
principle in dynamic programming [21]. The initial problem splits into iterative
steps, at each step a solution is sought in accordance with the principle of optimality.
The decision-making procedure will be carried out starting at the end and going to
the beginning.

Let )20 seeey )’EN—z in (1) are optimally chosen. Then the last step will be to
find the optimal value of the component Xy _;. Given that [Xy_, — Xy | <A we

can assume Xy, =Xy , + Asign ¢, (N —1).

The solution of problem (16) is presented:
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Ji=%0;(0)+ % ¢, 1)+ ...

(17) , , .
+ Ry @ (N -2) +(Ry_» + Asign o; (N -1)) @ (N-1)=
= 2,0,0)+ % 0, ()+...+ %, (@, (N=2)+ 9, (N-1)) + A ¢, (N 1)
Let us now turn to the following problem for a maximum: Y; — max on
condition:

(18) |k —X¢| <A, k=1, N-2

where
N-3
(19 yj=>" X0 )+ xn-2 [ 9j (N=2)+9; (N —1)]+A‘ ;i (N —11
i=0
Let us assume that X,..., X, in (19) are optimal. Then
(20)  Ry_o=fn_3 + Asign(p; (N=2)+e; (N 1))
The solution of problem (19) is

QD 95=%0j©0)+ X ;) +...+ tn_30;(N-3) +
+ [ans + asign [ (N=24+05 (N-D)]]fo; (N-2)+05 (N-D) ]+ 4| o (N-1) =
= %00, (0)+ %1 0j () + ...+ Ry (0 (N=3) + 0j (N=2) + ¢; (N 1)) +

+Alpj(N=2)+A p;(N=1)|+ A | pj (N-1)|

Continuing this process step by step, in the end we will have

N -1 N—-1|N-1
(22) max Yj = Xo Z(pj(i)+Az Z(oj(i) j=1,N-1
xeX, i=0 m=1 | i=m

For the Haar matrix, by virtue of orthogonality, we have:
23)  ¢j(0)+@j)+...+j(N-1)=0, j=1N-1

Taking into account relations (22) and (23), we obtain:

N-1 |m-1
(24) max yj:AZ Zgoj(i) j=1N-1
xeX, m=1 | i=0

If we consider the problem to a minimum, we have:
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(25) N -1

_min y] =—A
xe X,

In general

m-1

2. i)

i=0

N -1
26 fy|-a Y SN
xe X,

m=1

This relation leads to the following assertion.

Statement:
The least informative elements, which can be zeroed out in the future, are

the elements of the last bundle of vector 9 .
Proof. Let F = F,, (N) be the matrix of order

27)  N=2""(n>0), xeX,, y=F, (N)x=(Yy,.0r Yni) -

Based on (26) and starting from the form of the matrix MH ;M , we have for
28)  j=2KT1 .. .2k-1:

i znix‘ yj‘=ﬁ[\/2?" P22 2T )T (2 o) V2T ]:

— — 3
_ \/2k ! [1+2+“.+2n+|7k +(2n+l—k _1)+”.+1] _ Vzk : 22(n+l—K) — NA
N JIN N

It follows that the least informative elements are the elements of the last packets of

vector Y , so they can be reset to zero when the image or space image (SI) is further
processed.

Experimental research

Let’s use the theoretical studies and carry out an experiment related to the
application of the cluster analysis algorithm to decipher the SI for the presence of
WDS on the basis of the soil.

The state of the soil cover largely depends on anthropogenic factors —
industrialization, urbanization, contamination with solid and liquid waste, soil
poisoning with pesticides, etc.

As an experimental part of this article, we investigate the problem of using
wavelets-Haar for space images obtained from the Landsat artificial satellite (AS),
in aerospace monitoring of solid domestic waste. The experiment will consider
multispectral imagery, for example, one received from Landsat 4-5 TM satellites for
a given observation period (OP), usually at least 10 years long, as well as the data on
the amount of precipitation in the study area for the same period. Photographs (SI)
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should be geo-linked, atmospherically corrected and without clouds. In the
experiment, bands 1-7 are used.

Consider one of the methods for processing of multispectral images that
improves the results of decoding — the method of applying orthogonal
transformations (Fourier transform, Walsh, Haar, and Karunen-Loeve). In particular,
we consider the wavelet-Haar transformation. We also verify assertion 1, which was
proved earlier in this article.

It is known [12] that the bands of multispectral images very often turn out to
be correlated. The reason for this correlation may be:

- Correlation of spectral properties of objects (this is possible, for example, with
low reflectivity of vegetation cover in the visible part of the spectrum);

- Topography (the level of shading due to topographic features can be considered
the same in all ranges of registration of reflected solar radiation);

- Overlapping of registration ranges (ideally this factor is excluded when
designing the sensor, but in practice this is not always the case).

Such a correlation leads to the emergence of redundant information. The
goal that is in front of us in the experiment is to try to get rid of the redundant
information with minimal errors using the wavelet-Haar transform property of the
transformations stated in Statement 1. First, we consider the representation of a space
image by means of orthogonal transformations. Next, let us consider the selection of
the most informative coefficients or the selection of certain features by applying
wavelet-Haar transformations and performing the filtering in the local area of the
image, i.e. we will make the transition to a new basis for measurements in fixed
spectral channels.

The transformation matrix of the orthogonal transform under investigation
is fixed for a given type of sensor and survey system, therefore, for each new
surveying system; new coefficients of the discrete orthogonal transformations
(DOT) must be calculated.

Let us consider the point of the proposed method. The physical justification
for it is as follows. In multispectral imaging systems, the image is formed in
accordance with the reflection from objects of electromagnetic energy in narrow
spectral regions.

The image in certain channels fixes the reflection of the spectral brightness
of the original object in a given range of the electromagnetic spectrum.
Multispectral image

@)

consists of k images P, each of which represents the values of the brightness
measured in narrow spectral regions (K — number of channels of the survey system).
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Vector P i = (p,1 i p’ j5eees pikj ) contains the brightness values of the elements

P

ij in each channel of the filming system.

For different objects, the spectral brightness in different ranges of the
electromagnetic spectrum, although different, is strongly correlated. Measurements
in narrow spectral regions (bands) performed by a multispectral imaging system do
not eliminate the correlation dependence. Thus, the measurement system does not
form an orthogonal basis. Orthogonal transformations make a transition from the
space of measurements of the spectral brightness of objects to the space of attributes
associated with the properties of a given class of objects.

So, the experiment consists of two steps: the first one is the application of
the orthogonal transformation to the original image, which will allow decorrelating
the component image vectors and reducing the dimensionality of the image; the
second is to build a learning classifier for the task of pattern recognition.

Let us consider the implementation of the first part, namely, the selection of
characteristics.

We consider the type of object that undergoes changes in the presence of
solid household waste: clean soil, i.e. we are interested in such a characteristic sign
as brightness.

The purpose of experimental studies is to assess the accuracy of soil
deciphering based on comparing the results of visual decoding of the original image
and the image obtained with the use of the ADT. Then, based on comparing the
results of classification without learning, using the k-means algorithm for this image,
and on the image with orthogonal transformation. After segmenting the selected Sls,
we define homogeneous clusters.

Description of the algorithm

The further numerical algorithm is defined as follows.
Let us describe the algorithm first for the original one-dimensional vector X. The
transition to a two-dimensional image is accomplished by applying the experimental
results to the rows and columns of the original image, i.e. the Sls, will be discussed
in detail below.

Let X = (XO, X5 oo X,\H) be the initial data vector, considered as the
realization of some random process with certain properties.

F — discrete orthogonal transformation (wavelet-Haar transform);
F! —inverse transformation;

k — number of discarded items, K= —;

m
m — the number of stored items in the new coordinate system;
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S — matrix of dimension choice Mx N pamram, 1<M<N;
W — dimension recovery matrix N xm;
£ — some metric.
The task of selecting informative elements consists in choosing F, S, W so that

(30)  p(xF'WSFx )— min

The matrices F,, S, , W, lead to the indicated minimum and are called

respectively the optimal basis matrices, optimal choice matrices and optimal
recovery matrices.

Substantively, problem (30) reduces to the following. The original vector X
of dimension N undergoes an orthogonal transformation F, which leads to a new,
more convenient coordinate system. Then, using the selection matrix S, m samples
of the signal in the new coordinate system are selected. These samples are intended
for image recognition. If necessary, "extrapolation" (restoring the dimension) of
these samples by means of the matrix W is carried out. Then, by means of the
orthogonal transformation, the original signal is restored.

When solving the SIs decoding problem, we consider a simpler problem. Namely,

we fix the transformation F and take W = S". Then in (30) the minimization is
performed only over S.
The value p(X, F,~ W,S, F, ) is called the recovery error level.
Comment. Let S be a matrix of the form (j_ . 0),W=5",p - the root-

mean-square criterion, then in expression (30) the optimization is carried out only
with respect to F. In this case, the optimal basis is the Karunen-Loeve basis [3]. The
Karunen-Loeve basis leads to uncorrelated components, but requires a large volume

of operations -0 (N 3).
In view of our assertion 1, we can list the main steps of the algorithm under
consideration.

Let X = (XO, X5 eers XN—l) be the initial data vector from some metric

space(X , p), F is an orthogonal matrix of order N (wavelet-Haar);
The algorithm is implemented in three steps.
1. The vector X = (X,, X, , ... , Xy_; ) undergoes a transformation F:

Yo

yN—l

2. The vector y is replaced by the operator of choice S by a smaller vector ¥ :
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B2 =Sy =(VosYioeees Vi) >

which must be further deciphered.
The matrix S of dimension mx N has the form:

1 0

RN R
0001000

k — compression ratio of the original signal, k = %;

3. On the receiving side, the resulting vector ¥ is complemented to the dimension N
by means of the operation

- T ~
B9  F=5"9=(Yo.¥1s Ym1:0..,0).
4. The vector Y undergoes a reverse transformation F'ie.

(35 x=Fy,
which restores the original data vector with an error ¢ = p(x , % ).

The problem is to determine such a choice of the spectral components
replaced by zero, which ensures a minimum of error for a given K.
It follows from Assertion 1 that in the case of a wavelet-Haar transformation, it is
necessary to replace the last pack of blocks with zeros.

In more detail, let us consider in detail the case of two-dimensional space
images.

Entering the input system of the original image of dimension N x N, we
represent them in the form of their scans, namely the m=N? element vector, i.e.

consider a one-dimensional signal.
The coding process is performed in two stages.
1. By means of the transformation F m, the m-dimensional space of the original
vectors f is mapped into the m-dimensional spectral space of vectors f .
2. The transition to the k-dimensional (k < m) space by means of the operator S

reduces the dimension of the vector f , i.e. the most informative spectral components

of the vector f are selected.

The most informative are those spectral components whose transmission
will allow us to obtain in the decoder an estimate of g of the original vector f with

the minimum possible distortions determined by the chosen metric p(f , g) .
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The decoding process is performed in two stages:

1. By means of the operator W, a filtering of the noisy truncated vector f
and a transition from the k-dimensional to the m-dimensional space of the spectral
components are carried out.

2. Through the F ' operator m-dimensional space of spectral components is
mapped into m-dimensional space of initial vectors.

Let us give a photogrammetric interpretation of the described algorithm,
taking into account the research related to the WDS and space images, respectively.
The Haar transformation in matrix form can be writtenas Y =FxX, X =F'Y ,
where X and Y are matrices of the halftone image size in the luminance and frequency
space, F and F* are linear operators N x N of the size of the direct and inverse Haar
transform for the corresponding images of X and Y.

The matrix X is obtained by changing the size of the original matrix X from

N x N to mx M, where N=2", n=1,2,...change in spatial resolution.
To do this, an interpolation of the functional z= X (i, J) defined by a grid of values

i=1..m,j=1..mwithasteph=1 (m values along the abscissa and ordinate
axes) into the functional z = X (i, j), given by a grid of valuesi=1..m,j=1..m
with step h = (m-1) / N (N values along the abscissa and ordinate axes). Compression
of the matrix Y is provided by the compression matrix Y'= SFX (selection matrix)
S.

The effect of the operator S on Y acting as a low-pass filter (from 1 to m)
leads to another result of the direct conversion: Y'= SFX.

As a result of the inverse transformation of the (F')* matrix Y ' signal

X':(F')_1 Y' is restored with accuracy

1 N N 5
(36) & :P|2(Xax'):\/WZZ(Xij _X'ij) >

i=1 j=I

I, — standard-mean-square norm; &1 — error of restoring a two-dimensional signal.
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(al) (b1)

(a2) (b2)

Fig. 1. Recovery errors: 1) ¢1; 2) &2; on different channels
and at different compression ratios; b) matrices

We estimate the recovery errors (without the action of Statement)&',, €',

(under the action of the Statement) for the Haar transformation with different
compression coefficients k and on different channels of the original image X of the
litter area (landfill Kuchino, August 2011). We set n = 10. In Fig. 1 shows the
matrices E1 = [ei(i,))], E2 = [&2(i,j)] of sizes | x (N-1). We see that the maximum
accuracy is observed on the 6 (thermal) bands and it varies little with compression.

Matrices E; = E'| and the elements of the matrix E'; are on the average larger than

E: for a given value of k. The smaller k, the smaller the recovery error.

In Fig. 2 — an example of signal reconstruction for n '=n/2 =5 is given. It can be
seen from figure (e) that an increase in the spatial resolution and a decrease in the
compression ratio have little effect on the recovery result. In other words, the image
of littering can be restored both with preservation or even reduction of the spatial
resolution, and at its strong compression. This is due to the fact that the litter texture
is characterized by a random, random spatial distribution of pixel brightness.
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(1) R

Fig.2. An example of Haar transforming the litter image:

a) source images (with increasing spatial resolution, n = 10);

b) Haar transformation with contraction (n' = 5);

¢) Haar transformation with contraction and S (n' = 5);

d) composites of transformations (combination of different channels,
n=_8,n"=2);

e) the best transformation (combination [3 5 7]);

f) examples of images (1-n=8,n'=2,2—n=10,n"=3).

Conclusions

In this paper, the Haar wavelet transforms used in the recognition of space
images are studied. The assertion about the determination of the selection matrix for
a given type of transformation is proved.

An experiment has been carried out that confirms the validity of the asserted
statement when decoding space images. This task is included as a component module
of the project for aerospace monitoring of WDS facilities. The principle of optimality
in dynamic programming, elements of mathematical analysis, the theory of discrete
orthogonal transformations, as well as photogrammetric bases of information
representation in space images are used in the work.
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U3CJIEJBAHE HA OCHOBHUTE XAAP YENBJIET-
TPAHC®OPMALIMHU B 3AJJAYATA 3A JEKOJUPAHE
HA IPOCTPAHCTBEHHU U30BPAKEHUS IPM OTKPUBAHE
HA CMETHIIA

M. Kazapan, M. Illaxpamanan, C. 3adynog

Pesrome

B mHacrosimata CTaTHs HHE H3CICABAME H3IMOJI3BAHETO HA OPTOrOHAIHH
Tparcopmalni, a IMEHHO OCHOBHHTE Xaap yeiBieT Tpancdopmaiuu ¢ 1en odpa-
00TKaTa Ha IAHHU OT JIUCTAHI[MOHHU M3CIICBAHUS HA 3eMsiTa.

W3non3Ba ce BbTpEIIHATA CTPYKTYpa Ha OPTOrOHAJIHUTE Xaap TpaHcdop-
Manuy. Xaap MarpulaTta ce paszeis Ha OJIOKOBE OT €[MH M ChIIM THII, Taka 4Ye Ja €
BB3MOXKHA TTapalieNTi3alisd Ha W3YMCIICHHUsATa. Y CTaHOBsBA ce IeIecho0pa3HOCTTa Ha
3aMeHsHE Ha CIIEKTPATHNTE KOMIIOHEHTH, ChOTBETCTBAIIN Ha Iens OJI0K (MM HAKOJIKO
O070Kka) Ha OpTOrOHaNHaTa Martpuma c Hymd. [IpoBemeHM ca TEOpPEeTWYHH U
SKCIIEPUMEHTAIHM M3CJIE/IBAHUSI C 111 MOJOOpsiBaHE Ha pe3yNTaTUTe HpPU KIIACH-
¢uxanus Ha n300pakeHns (Ype3 MPUMEPH OT KIIbCTepHus aHanu3). Koedunnenrure Ha
pasmmpenue Ha Xaap yeiiBiiera ce N3M0J3BaT KaTo MHIUKATOPHU MPH JISKO-THUPAHETO Ha
MPOCTPAHCTBEHH M300paKEHHS B THPCEHETO Ha CMETHIIA.
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Ilen Ha Ta3um myOnuMKamMs € Ja ONHWIIE MOAXOoAa, Ha Oa3zaTta Ha KOWTO ce
YCTaHOBSIBA ONTHMAJICH METOJI BBPXY KJIaC OT BEKTOPH C pPEATHH KOMITOHCHTH

X y= %=X s Xy ): MAX|X,(_ =X, | < As TPWIOKEHHE HA JBYMEPHH JAMCKPETHH Xaap
k

yeliBner TpanchopManuMK BBPXY 3aJadarta 3a pas3lo3HaBaHE Ha CMETHIa B
MIPOCTPAHCTBEHH N300pasKEHHUS.

Obwa memooonozuss Ha u3ciedgaremo. MatepuaabT U3MOJI3BA €IIEMEHTH Ha
MaTeMaTHYEeCKHUs aHalu3, YeUBJIET aHain3a, TeOpHUsTa Ha JUCKPETHUTE OPTO-TOHAIHU
TpaHcHOpMAIMU U METOUTE 3a AEKOJUPaHe HA KOCMHYECKH H300pa-KeHHSI.

Hayuna nosocm. Komupanero upe3 mpeoOpasyBaHe ¢ WHIUPEKTEH METOI
0co0eHO e(eKTMBeH NnpH o00paboTKaTa Ha JBYMEPHHM CHTHAIM, Hal-Bede IIpo-
CTPAHCTBEHH M300paKEHHS, N3MOI3BAHH 3a JUCTAHIIMOHHH U3CICIBAHUS Ha 3eMsTa.

Hue mpemmarame mojaxoj, KOHTO B3eMa MoJ BHUMaHHE CTPYKTypaTa Ha Xaap
yeWBJIeT MaTpHIaTa, KaTo B CHIIOTO BpEME pa3lo3HaBa CMETHINA B MPOCTPAHCTBEHH
HM300paKCHUS.

Crarusita oOXBalla EKCICPHMEHTATHOTO TMPHIOKEHHe Ha Xaap yeHBIeT
TpaHchOpMalMUTe 3a JCKOAWpaHe Ha MPOCTPAHCTBEHHM wu300paxkenus. Hue
pasriexaame ciydamTe, KakTO C, Taka W 0e3 TeXHHKaTa Ha B3eMaHe MpPEIBHUI
CTpyKTypara Ha Xaap yelBJIeT MaTpHUIIHTE.
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